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Abstract. We estimate, by means of a model, the long-range part of the hyperon scalar form factors and
their contribution to the pion–hyperon sigma term.

1 Introduction

High-energy proton–nucleus or nucleus–nucleus collisions
may release large amounts of energy into very small regions
and disturb strongly the QCD vacuum. After hadroniza-
tion, these reactions produce final states which, typically,
contain many pions and a wide variety of other particles,
including strange ones. Pion–hyperon (πY ) interactions,
therefore, are among the many elements that contribute
to the detailed description of high-energy collisions. The
fact that these particles are produced in the same reaction
allows one to assume that they interact as comovers in
an expanding system, with relative energies which are not
very high, considering that in these cases the freeze-out
temperature is of the order of the pion mass.

An interesting feature of high-energy proton–nucleus
collisions is that both hyperons and antihyperons detected
in inclusive processes may be polarized [1]. In 1993, Hama
and Kodama [2] assumed that antihyperons were produced
unpolarized and would become polarized afterwards, by
interacting with the surrounding particles. They employed
an optical potential and found out that it had to depend
on the particular hyperon considered. So, in high-energy
pA collisions, antihyperon polarization can be understood
by means of hyperon dependent final state interactions.

This idea was further developed recently [4,5] using the
hydrodynamical model, which describes well many of the
main feactures of the high-energy multiparticle production,
supplemented by a microscopic (low-energy) chiral pion–
hyperon interaction [6].

In low-energy πY scattering, the polarization is given by

P = −2
Im(f∗g)

|f |2 + |g|2 n̂, (1)

where f and g are the usual [7] spin no-flip and spin flip
amplitudes, given by

f ∼ fS + (2fP3 + fP1) cos θ,
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Fig. 1. πN interaction

g ∼ (fP3 − fP1) sin θ, (2)

where n̂ is the normal to the reaction plane and θ is the
scattering angle. Polarization is thus sensitive to the in-
terference between S and P waves. Details on low-energy
polarization may be found in [4,6], and on high-energy po-
larization in [4,5]. As there are no phase shift analyses for
πY scattering, one needs a model in order to describe this
process. In [6] we calculated the polarization using a chiral
model adapted from low-energy πN interactions [8], shown
in Fig. 1, where amplitudes are saturated by spin 1/2 and
3/2 intermediate states, supplemented by the exchange of
a scalar system in the t-channel. This last contribution has
a strong influence over the amplitude fS in (2) and hence
plays a determinant role in the polarization. It is related, by
means of the Ward–Takahashi identity, to the scalar form
factor of the baryon, denoted by σ(t). At large distances,
this function is dominated by triangle diagrams involving
the exchange of two pions.

In the πN model of [8], the dependence of the scalar
exchange on t, at low energies, had the form aN +bN t, and
the values of the parameters (aN , bN ) could be extracted
from empirical subthreshold coefficients. By analogy, in [6],
theπY scalar exchangewas assumed tobe givenbyaY +bY t.
In [3] we found that one needed to use values such that
(aΞ , bΞ) < (aΣ , bΣ) < (aΛ, bΛ) < (aN , bN ), as gA and gA∗ ,
considering SU(3), decrease with the hyperon mass (see
Table 1), but this ansatz remained unproved.

These findings motivate the present work, in which we
try to justify this hierarchy by evaluating the pion cloud
contribution to the scalar form factor of spin 1/2 hyperons.
Our calculation follows a procedure used previously in the
nucleon case [9].
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Table 1. Axial coupling constants for the processes πB → B′(gA)
and πB → R(g∗

A)

N ∆ Λ Λ∗ Σ Σ∗ Ξ Ξ∗

(1405) (1385) (1530)

N 1.25 2.82 – – – – – –

Λ – – – – 0.98 1.74 – –

Σ – – 0.98 1.63 0.52 ∼ 0 – –

Ξ – – – – – – 0.28 0.84

The interactions of pions with other hadrons can be
well described by means of effective theories, in which an
approximate SU(2) × SU(2) symmetry is broken by the
small pionmass (µ). In the framework of chiral perturbation
theory, the leading term of the nucleon scalar form factor is
proportional to µ2 and determined directly by the coupling
constant c1 of the second order Lagrangian [10] (the second
order Lagrangian shown in [10] contains four independent
coupling constants, c1, . . . , c4). Loop diagrams, which carry
the dependence on t, begin contributing at order O(µ3).
This means that, in a strict calculation, one is not able to
predict the value of the parameter a, which is related with
c1. In order to overcome this difficulty, a model is needed.

One notes that, to O(µ3), triangle diagrams are com-
pletely determined, since they involve only known masses
and coupling constants. To O(µ4), loop diagrams combine
with the constants c1, c2 and c3. The study of πN sub-
threshold coefficients indicates that c1 is smaller than c2
and c3, which are saturated by the ∆. This allows the O(µ4)
scalar form factor to be well represented by the leading tree
contribution associated with c1 and two triangle diagrams,
involving N and ∆ intermediate states, as in Fig. 1.

When one goes to configuration space, these two kinds
of contributions split apart in σ̃(r), the Fourier transform of
σ(t). The tree term yields a zero-range δ-function, whereas
the triangle diagrams give rise to spatially distributed struc-
tures, fully determined by known parameters. As noted
in [11], for the case of hadron polarizabilities, the Fourier
transform acts as a filter which transmits only genuine
pion loop effects. The σ-term, defined as σ ≡ σ(t = 0), is
given by

σ = 4π

∫ ∞

0
drr2σ̃(r). (3)

In non-linear lagrangians, the pion degrees of free-
dom are better described by a direction π̂ and by an an-
gle θ, embodied into the operator U = exp(iτ · π̂θ) =
cos θ + iτ · π̂ sin θ. In this framework, the value of the di-
mensional pion field φ = fπ sin θπ̂ cannot be larger than
fπ, since Goldstone bosons are collective states derived
from the qq̄ condensate. Accordingly, pion loop effects cor-
respond to a transformation of the condensate that sur-
rounds the nucleon and the corresponding energy densities
cannot exceed µ2f2

π , that of the original condensate. We
define a radius R by the relationship σ̃(R) = f2

πµ2 and

replace (3) with

σ =
4
3

πR3f2
πµ2 + 4π

∫ ∞

R

drr2σ̃�(r), (4)

where σ̃�(r) is the loop density. In the case of the nucleon [9],
this expression yields σ = 46 MeV, a value quite close
to that prescribed in [12]. In Appendix B we discuss the
relationship of this approach with the usual one [10] and
show that the cutting radius can be interpreted as a kind
of renormalization scale. These results support the present
extension of this procedure to the case of strange baryons.

2 Formalism

The scalar form factor for a spin 1/2 baryon B is defined
as 〈B(p′)| − Lsb|B(p)〉 ≡ σ(t)ū(p′)u(p), where Lsb is the
chiral symmetry breaking lagrangian and t = (p − p′)2.
In this work we assume the scalar form factor of strange
baryons to be given by the processes shown in Fig. 1. The
relevant interaction Lagrangians are given by

LπBB′ =
gA

2fπ

[
B̄′γµγ5TaB

]
∂µφa + h.c., (5)

and
LπBR =

g∗
A

2fπ

[
R̄µTaB

]
∂µφa + h.c., (6)

where B, R and φ denote respectively spin 1/2, spin 3/2
and pion fields1, T is a matrix that couples baryons into
an isospin 1 state and fπ is the pion decay constant. The
coupling constants gA and g∗

A for the processes πB →
B′ and πB → R, are given in Table 1. The former were
obtained from the usual SU(3) relations [13] using the
πNN and πΛΣ [14] vertices as input. One notes that they
would not change much if the more recent results of [15]

1 In analogy with the πN∆ coupling, the πBR lagrangian
can be written in a more general form [8] as

LπBR =
g∗

A

2fπ

{
R̄µ

[
gµν −

(
Z − 1

2

)
γµγν

]
TaB

}
∂µφa + h.c.

However, the influence of the parameter Z over πN subthresh-
old coefficients amounts to just a few percent and we restrict
ourselves to the simpler form given in (6) (using Z = −0.5, the
accepted value for the πN interaction) in this exploratory work.



C.C. Barros Jr., M.R. Robilotta: Hyperon scalar form factors 447

were used. The values of g∗
A were taken from Breit–Wigner

fits to resonance decay widths [6]. The spin 3/2 propagator
for a particle of mass M is written as

Gµν(p) = − (�p + M)
p2 − M2 (7)

×
(

gµν − γµγν

3
− γµpν

3M
+

pµγν

3M
− 2pµpν

3M2

)
.

The initial and final baryon momenta are denoted by p
and p′, whereas k and k′ are the momenta of the exchanged
pions. We also use the variables P = (p′ +p)/2, q = k′ −k,
Q = (k + k′)/2, t = q2 and s = [Q2+2P ·Q− t/4+m2].

The contribution of an intermediate particle of spin s
and mass M to the scalar form factor is given by

σs(t; M)ūu = iµ2
(

gA

2fπ

)2 (
T †

aTa

) ∫
[. . .][ūΛsu], (8)

with∫
[. . .] (9)

=
∫

d4Q

(2π)4
1

[(Q − q/2)2−µ2][(Q + q/2)2 − µ2]
,

[ūΛ1/2u] = ū

{
−(m + M) +

(m −M)(m + M)2

s − M2

+
[
1 +

(m + M)2

s − M2

]
�Q

}
u, (10)

[ūΛ3/2u] = −ū

{[
1

s − M2

(
(m + M)(µ2 − t/2)

− (2M + m)
6M2 µ4

)

+
(

m2 − M2

s − M2 − 1
)

(m + M)
6M2

× (
(m + M)(2M − m) + 2µ2) − m(s − m2)

6M2

]

+
[

1
s − M2

(
(µ2 − t/2) +

2m

3
(m + M)

− (m + M)µ2

3M
− µ4

6M2

)
+

(
m2 − M2

s − M2 − 1
)

(11)

× 1
6M2

(
M2 + 2mM − m2 + 2µ2) − s − m2

6M2

]
�Q

}
u.

In writing these expressions we have replaced k2 and
k′2 in the numerator with µ2. This approximation amounts
to neglecting short-range interactions, since terms propor-
tional to (k2 − µ2) and (k′2 − µ2) in the numerator may
be used to cancel pion propagators in (8).

Using the loop integrals Π defined in Appendix A,
we obtain

σ1/2(t) =
T †

aTa

(4π)2

(
gAµ

2fπ

)2 (m + M)
8m3

{[
4(m − M)m2

− t(m + M)] Π(000)
cc

[−4(m − M)m2 + t(m + M)

+ 4m2(µ2 − t/2)/(m − M)
] m2 − M2

2mµ
Π

(000)
s̄c

}
, (12)

σ3/2(t) =
T †

aTa

(4π)2

(
g∗

Aµ

2fπ

)2 (m + M)
24mM2

×
{[

2(m2 − M2)(m + M)

+
(µ2 − t/2)

m2(m + M)

×
(
M4 − 2mM3 + 6m2M2 − 2m3M − 13m4

3

)

+
µ2

m2

(
−M3 + 3mM2 − 5m2M − 5m3 − 4m4

3(m + M)

)]

×Π(000)
cc

+
[
−2(m2 − M2)(m + M) + 8(µ2 − t/2)

mM2

m2 − M2

+
(µ2 − t/2)

m2(m + M)

× (−M4 + 2mM3 − 8m2M2 − 2m3M + m4 )
+

µ2

m2

(
M3 − 3mM2 + 5m2M + 5m3)]

× (m2 − M2)
2mµ

Π
(000)
s̄c

}
, (13)

with

Π(000)
cc = −

∫ 1

0
da ln

(
1 + a(a − 1)t/µ2 )

(14)

= 1 −
√

1 − 4µ2/t ln

[ √
1 − 4µ2/t + 1√
1 − 4µ2/t − 1

]
,

Π
(000)
s̄c = (−2m/µ)

∫ 1

0
daa

×
∫ 1

0
dbµ2/ (a(1 − a)(1 − b)t (15)

+[µ2 − ab(µ2 + m2 − M2) + a2b2m2]
)
.

For M = m, one has Π
(000)
cc ∼ Π

(000)
s̄c ∼ O(µ0) and

hence the loop contribution to σ(t) is O(µ3), as expected.
This result does not change when M �= m because, from
(A.8), one learns that [Π(000)

cc − (m2 −M2)Π(000)
s̄c /2mµ] ∼

O(µ3).
The scalar form factor in configuration space is obtained

by going to the Breit frame and writing

σ̃(r) =
∫

dq

(2π)3
e−iq·rσ(t) . (16)

The corresponding expressions are derived from (12) and
(13) through the replacements t → ∇2 and Π → µ3S,
with S given by (A.10)–(A.11).
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3 Results and conclusions

We begin by discussing our results for the ratios σ̃(r)/f2
πµ2

for the spin 1/2 baryons. In Fig. 2 we display the indi-
vidual contributions of the various intermediate states as
functions of the distance and one notes that the role of res-
onances is rather important. Comparing this feature with
the fact that, in the framework of chiral symmetry, one
has σ1/2 → O(µ3) and σ3/2 → O(µ4), one learns that the
power counting hierarchy is subverted around r ∼ 1 fm.

The full curves for the N , Λ, Σ and Ξ states are shown in
Fig. 3. The values of the distance R for which σ̃(R)/f2

πµ2 =
1 and of the σ-term, calculated by means of (4), are given
in Table 2. One finds that heavier systems correspond to

~=
σ 1/2 3/2

+ +

Fig. 2. The scalar form factor (grey blob) receives contributions
from tree interactions (white blob) and triangle diagrams with
spin 1/2 and 3/2 intermediate states

Table 2. Baryon radius (R), σ-term = σ(0) and σ(2µ2)

N Λ Σ Ξ

R (fm) 0.58 0.51 0.45 0.35

σ (MeV) 46.0 33.5 29.2 12.0

σ(2µ2) (MeV) 57.6 39.3 36.2 13.25

smaller values of these quantities, but one should bear in
mind that the coupling constants of Table 1 also intervene.

These results allow the scalar form factor in momentum
space to be written, for each of the baryons considered, as

σ(t) = σ +
∑

[σs(t; M) − σs(0)] , (17)

where the summation runs over possible intermedi-
ate states,

σN (t) + σN (0) = σ + σ1/2(t; N) + σ3/2(t; ∆),

σΛ(t) + σΛ(0) = σ + σ1/2(t; Λ) + σ3/2(t; Σ∗(1385)),

σΣ(t) + σΣ(0) (18)

= σ + σ1/2(t; Σ) + σ1/2(t; Λ) + σ1/2(t; Λ∗(1405)),

σΞ(t) + σΞ(0) = σ + σ1/2(t; Ξ) + σ3/2(t; Ξ∗(1530)),

with σs(t; M) given in (12) and (13). The results are shown
in Fig. 5.

In Table 2 we also quote σ(2µ2), the value of this func-
tion at the Cheng–Dashen point. The contribution of σ(t)
to the isospin even πY scattering subamplitude A+ [6] is
given by σ(t)/f2

π . It corresponds to the t-channel exchange
of a scalar system. With the motivation discussed in the
introduction, we make a linear numerical fit of σ(t) at
low energies,

σ(t)/f2
π = a + b t. (19)

The coefficients given in Table 3, yield reasonable results
for t > −0.1.
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Fig. 3. Intermediate state contribu-
tions to the scalar form factor of the
spin 1/2 baryons
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Table 3. Coefficients of the series given in (19) and values used in [4],
within brackets

N Λ Σ Ξ

a(µ−1) 0.7423 [0.25] 0.5390 [0.22] 0.4698 [0.13] 0.1936 [0.07]

b(µ−3) 0.0690 [0.40] 0.0361 [0.35] 0.0322 [0.20] 0.0074 [0.12]
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Fig. 4. Full results for the scalar form factor of the spin
1/2 baryons
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These results support qualitatively the assumptions
made in [6], namely that the hyperon parameters must
be smaller than those of the nucleon. They also indicate
that the values used in [4], given within brackets in Ta-
ble 3, must be updated. In a previous work we have learned
that the influence of the scalar form factor over high-energy
polarization stays in the range 10–30% and hence a theoret-
ical determination of this function in the case of hyperons
may improve the reliability of inputs into hydrodynamical
calculations. A full calculation of the hyperon polarization
in high-energy proton–nucleus collisions based on the the-
oretical values discussed here is in progress and will be
reported elsewhere.

Appendix A: Loop integrals

The basic loop integrals needed in this work are given by

Iµ...
cc =

∫
[. . .] (Qµ/µ . . .) , (A.1)

Iµ...
s̄c =

∫
[. . .] (Qµ/µ . . . )

2mµ

[s − M2]
. (A.2)

All denominators are symmetric under q → −q and
hence results cannot contain odd powers of this variable.
The integrals are dimensionless and have the following
tensor structure:

Icc =
i

(4π)2
{

Π(000)
cc

}
, (A.3)

Iµν
cc =

i
(4π)2

{
qµqν/µ2Π(200)

cc + gµνΠ̄(000)
cc

}
, (A.4)

Is̄c =
i

(4π)2
{

Π
(000)
s̄c

}
, (A.5)

Iµ
s̄c =

i
(4π)2

{
Pµ/mΠ

(001)
s̄c

}
. (A.6)

These integrals are not independent. Multiplying (A.1)
by qµ, by gµν and neglecting short-range terms one has

Π̄(000)
cc =

1
3

(
1 − t/4µ2) Π(000)

cc + . . . (A.7)

Multiplying (A.2) by Pµ, one gets

P 2

m2 Π
(001)
s̄c (A.8)

= Π(000)
cc − [(

µ2 − t/2
)

+ (m2 − M2)
] Π

(000)
s̄c

2mµ
+ . . .

The dimensionless configuration space functions S are
defined as

S =
∫

dk

(2π)3
e−ik·xΠ, (A.9)

with x = µr and k = q/µ. One has

S(000)
cc =

4
4π

K1(2x)
x2 , (A.10)

S
(000)
s̄c = − 1

4πx

∫ 1

0
daa

∫ 1

0
db

2m/µ

a(1 − a)(1 − b)
e−xθs̄c ,

(A.11)
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where

θ2
s̄c =

1 − ab[1 + (m2 − M2)/µ2] + a2b2(m/µ)2

a(1 − a)(1 − b)
. (A.12)

For the nucleon, the following approximation holds [10]:

S
(000)
s̄c = − e−2x

2 x2 +
µ

πmx

[
K0(2x) +

K1(2x)
x

]

− µ2

8m2

e−x

x
. (A.13)

Appendix B:
Cutting radius as renormalization scale

In the case of the nucleon, (12) becomes

σ =
4
3

πR3f2
πµ2 +

3
16π

g2
A

f2
π

µ3 (B.1)

×
∫ ∞

ρ

dx x2
{(

1 − ∇2

2

)
S

(000)
s̄c − µ

2m
∇2S(000)

cc

}
,

where ρ = µR and the functions S are given by (A.10) and
(A.13). All integrals can be performed analytically and
one has

σ =
4
3

πR3f2
πµ2

+
3 g2

A

16πf2
π

µ3
{[

1
4

+
1
2ρ

]
e−2ρ

+
µ

2πm
[2K0(2ρ) − ρK1(2ρ) − 6K2(2ρ)]

+
µ2

16m2

(
1
2

+ ρ

)
e−2ρ

}
. (B.2)

The chiral expansion of this result yields

σ =
[

4
3

πR3f2
π +

3
32π

g2
A

f2
π

(
1
R

+
3

πmR3

)]
µ2

− 9
64π

g2
A

f2
π

µ3 (B.3)

− 3 g2
A

16π2f2
πm

µ4
[
ln(µR) +

mπR

2
+ γ +

5
2

]
.

Comparison with the standard result [10]

σ = −4c1µ
2 − 9 g2

Aµ3

64πf2
π

− 3 g2
Aµ4

16π2f2
πm

ln
( µ

Λ

)

− 9 g2
Aµ4

64π2f2
π m

(B.4)

indicates that the structures of non-analytic terms are iden-
tical, provided one identifies the cutting radius R with the
inverse of the renormalization scale Λ.
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